• 设为首页
  • 点击收藏
  • 手机版
    手机扫一扫访问
    迪恩网络手机版
  • 关注官方公众号
    微信扫一扫关注
    迪恩网络公众号

BeloborodovDS/MobilenetSSDFace: Caffe implementation of Mobilenet-SSD face detec ...

原作者: [db:作者] 来自: 网络 收藏 邀请

开源软件名称(OpenSource Name):

BeloborodovDS/MobilenetSSDFace

开源软件地址(OpenSource Url):

https://github.com/BeloborodovDS/MobilenetSSDFace

开源编程语言(OpenSource Language):

Jupyter Notebook 99.1%

开源软件介绍(OpenSource Introduction):

Mobilenet+SSD face detector training

This repo contains code for Mobilenet+SSD face detector training. This detector is compatible with Movidius Neural Compute Stick. You need NCSDK to test it with Neural Compute Stick.

Deploying models for Caffe and Neural Compute Stick

You can deploy two different SSD face detectors: "full" detector or "short" detector. The latter is shortened: layers 14-17 are deleted. It is a bit faster (67 ms vs 75 ms) and captures small faces only.

To deploy detectors to Caffe:

make deploy_full

or

make deploy_short

To deploy detectors to NCS (and Caffe):

make compile_full

or

make compile_short

Deployment models are placed in models/deploy.

Training

To train this detector (SSD-Caffe is needed):

  1. Download WIDER and FDDB datasets.

  2. Edit Makefile: set data_dir, lmdb_pyscript, caffe_exec, datasets names and path to data folder.

  3. Make LMBD database:

make lmdb
  1. Make face model (generate templates and get pre-trained weights):
make face_model_full
  1. Edit train_files/solver_train_full.prototxt if necessary and train net:
make train_full

Or resume from snapshot:

echo /path/to/snapshot > train_files/snapshot.txt
make resume_full
  1. Test model:
echo /path/to/snapshot > train_files/snapshot.txt
make test_full

Test best model from this repo:

make test_best_full
  1. (Optional) Make long-range (shorter) model:
make face_model_short

And test it:

make test_short_init
  1. Plot loss from Caffe logs:
make plot_loss

Plot Average Precision from snapshots:

echo /path/to/any/snapshot > train_files/snapshot.txt
make plot_map_full
  1. Profile initial VOC net, best face net, short face net for Neural Compute Stick:
make profile_initial

or

make profile_face_full

or

make profile_short_init

Also see Caffe_face.ipynb for details.

See images/output to see how nets perform on examples (test network to get these results).

See this notebook for training this model in Google Colaboratory.




鲜花

握手

雷人

路过

鸡蛋
该文章已有0人参与评论

请发表评论

全部评论

专题导读
热门推荐
阅读排行榜

扫描微信二维码

查看手机版网站

随时了解更新最新资讯

139-2527-9053

在线客服(服务时间 9:00~18:00)

在线QQ客服
地址:深圳市南山区西丽大学城创智工业园
电邮:jeky_zhao#qq.com
移动电话:139-2527-9053

Powered by 互联科技 X3.4© 2001-2213 极客世界.|Sitemap